Search for:
Stop Feeding AI Junk: A Systematic Approach to Unstructured Data Ingestion
It’s go-time for enterprise AI. A PagerDuty global survey of 1,000 IT and business executives found that 62% of companies using agentic AI expect a return of 171% on average. But getting to ROI is no easy task. Recent surveys show mixed results on efforts thus far, with “getting strategies right” and “making data ‘AI-ready’” […]


Read More
Author: Kumar Goswami

Rethinking (Data) Politics in the Workplace
Most people cringe when they hear the word politics in the workplace. It brings to mind backroom deals, favoritism, turf wars, and decision-making that feels more about power than about progress. In the world of data, politics often gets blamed for blocking change — departments hoarding information, leaders fighting over priorities, and executives struggling to […]


Read More
Author: Robert S. Seiner

The Good AI: Data Contracts for AI Transparency
“AI is only as trustworthy as the data that fuels it.”  This statement has never been more relevant. AI systems now power decisions, affecting credit approvals, medical diagnoses, fraud detection, and countless other critical areas. Yet without transparency into data sources, quality, and lineage, AI can quickly become a black box — opaque, unpredictable, and […]


Read More
Author: Subasini Periyakaruppan

Strengthening Compliance with Better Data
Compliance today isn’t just about keeping pace with rules and regulations; it’s about keeping pace with culture. Globalization, geopolitical uncertainty, and rapid shifts in technology mean the risks companies face are more complex than ever. Yet too many organizations are still relying on legacy systems, outdated processes, and once-a-year, check-a-box training to protect their people […]


Read More
Author: Ty Francis

The Book Look: Data Interoperability
Dave Wells is a thought leader and influencer in the world of data. Early on in his role as TDWI education director — in the wild frontier days of data warehousing — he selected some of the data movers and shakers, such as Bill Inmon and Ralph Kimball, to present at world conferences. Dave played […]


Read More
Author: Steve Hoberman

LLMs Are Rewriting the Rules of Behavioral Targeting
Marketers missed the real story while they scrambled to rebuild audience targeting without cookies: LLMs weren’t just changing how we write. They were rewriting the rules of how we understand consumer behavior online.  The death of the third-party cookie was supposed to kill behavioral targeting. Instead, it’s about to become a lot smarter. The New […]


Read More
Author: Neej Gore

AI Governance Reaches an Inflection Point
A new survey of 1,250 data governance executives commissioned by OneTrust offers a detailed snapshot of how organizations are grappling with the realities of AI adoption. The findings are clear: Enterprise use of artificial intelligence has surged, but the governance structures required to manage it have not kept pace. As adoption accelerates, governance is no longer optional […]


Read More
Author: Myles Suer

Building a Data-First Culture
Technology is not what powers a data-first culture, but people, operating models, and disciplined delivery. Most organizations already possess more tools and data than they can effectively utilize. What differentiates the leaders is that they tie analytics to real business results, productize effective data, govern for speed and security, and, most importantly, rewire decisions. While […]


Read More
Author: Chirag Agrawal

The Next Frontier in Enterprise IT: Agentic AI That Takes Responsibility
Despite years of experimentation, most organizations agree: Artificial intelligence hasn’t remade the enterprise or shattered ROI goals — yet. In fact, McKinsey found that only about 1% of respondents in a recent survey believe they are at artificial intelligence maturity. 80% of respondents in a similar report failed to see a tangible ROI from generative AI.   The data above shows that AI system implementations from […]


Read More
Author: Dr. Maitreya Natu

Through the Looking Glass: Mahler, Creativity, and AI-Generated Music
It’s been just a few months since I checked off one of the top items on my bucket list. This past May, my wife and I traveled to London and Amsterdam. We built our trip around attending several concerts at the third-ever Gustav Mahler Festival [1]. We’d awoken at 3:30 a.m. back in February to […]


Read More
Author: Randall Gordon

When Should You Hire More Data Engineers And Analysts – How To Grow Your Data Team


Is your data team constantly feeling the pressure to deliver? Do members of your team say they feel like they’re doing work meant for two people? If the answer to either or both of these questions is a resounding yes, you may feel tempted to think, “We just need more hands on deck.” However, hiring…
Read more

The post When Should You Hire More Data Engineers And Analysts – How To Grow Your Data Team appeared first on Seattle Data Guy.


Read More
Author: research@theseattledataguy.com

Comparing EU and U.S. State Laws on AI: A Checklist for Proactive Compliance


The global market for artificial intelligence is evolving under two very different legal paradigms. On one side, the European Union has enacted the AI Act, the first comprehensive and enforceable regulatory regime for AI, applicable across all member states and with far-reaching extraterritorial scope. On the other, the United States continues to advance AI oversight primarily at the state level, resulting in a patchwork of rules that vary in focus, definitions, and enforcement…

The post Comparing EU and U.S. State Laws on AI: A Checklist for Proactive Compliance appeared first on DATAVERSITY.


Read More
Author: Fahad Diwan

What Makes Small Businesses’ Data Valuable to Cybercriminals?


While large corporations like Optus, Medibank, and The Iconic often dominate headlines for cybersecurity breaches, the reality is that small businesses are increasingly attractive targets for cybercriminals. Many small business owners operate under the dangerous illusion that their business is too small or insignificant to attract the attention of cybercriminals or that they have nothing of value to steal. This mindset often leads to a false sense of security…

The post What Makes Small Businesses’ Data Valuable to Cybercriminals? appeared first on DATAVERSITY.


Read More
Author: Samuel Bocetta

Ask a Data Ethicist: How Does the Use of AI Impact People’s Perceptions of You?


Last October, I wrote a column about the use of generative AI in producing a professional service. I pondered the question of whether or not others’ knowledge about the use of AI in producing a professional service – such as legal work, consulting, or creative work –  would devalue the service. My hypothesis was that […]

The post Ask a Data Ethicist: How Does the Use of AI Impact People’s Perceptions of You? appeared first on DATAVERSITY.


Read More
Author: Katrina Ingram

Mind the Gap: Agentic AI and the Risks of Autonomy


The ink is barely dry on generative AI and AI agents, and now we have a new next big thing: agentic AI. Sounds impressive. By the time this article comes out, there’s a good chance that agentic AI will be in the rear-view mirror and we’ll all be chasing after the next new big thing. […]

The post Mind the Gap: Agentic AI and the Risks of Autonomy appeared first on DATAVERSITY.


Read More
Author: Mark Cooper

Why Business-Critical AI Needs to Be Domain-Aware


We stand at a pivotal moment. Generative AI, with its large language models (LLMs) and retrieval-augmented generation (RAG) systems, promises to revolutionize how industries operate. We’ve all seen the impressive demos that can summarize articles, write code, or draft marketing copy. But when the stakes are high and an error could lead to a financial […]

The post Why Business-Critical AI Needs to Be Domain-Aware appeared first on DATAVERSITY.


Read More
Author: Andreas Blumauer

Book of the Month: “Rewiring Your Mind for AI” 


This month, we’re reviewing “Rewiring Your Mind for AI” by David Wood. In this book, Dr. Wood shows us how to think differently to leverage the benefits of artificial intelligence (AI).  The book first sets us up to think in terms of growth mindsets instead of limiting mindsets – starting with some anecdotes about how calculators and […]

The post Book of the Month: “Rewiring Your Mind for AI”  appeared first on DATAVERSITY.


Read More
Author: Mark Horseman

How to Overcome Five Key GenAI Deployment Challenges


Generative AI (GenAI) continues to provide significant business value across many use cases and industries. But despite the many successful customer experiences, GenAI is also proving to be challenging for some businesses to get right and deploy across their organizations in full production. As a result, plenty of projects are getting stuck in planning, experimentation, […]

The post How to Overcome Five Key GenAI Deployment Challenges appeared first on DATAVERSITY.


Read More
Author: Jim Johnson

Open Data Fabric: Rethinking Data Architecture for AI at Scale


Enterprise AI agents are moving from proof-of-concept to production at unprecedented speed. From customer service chatbots to financial analysis tools, organizations across various industries are deploying agents to handle critical business functions. Yet a troubling pattern is emerging; agents that perform brilliantly in controlled demos are struggling when deployed against real enterprise data environments. The problem […]

The post Open Data Fabric: Rethinking Data Architecture for AI at Scale appeared first on DATAVERSITY.


Read More
Author: Prat Moghe

Optimizing retail operations through a practical data strategy


Given the pace of change in the retail sector, impactful decisions can be a competitive advantage, but many organizations are still in the dark. They’re not operating with actionable insights… trusting their gut to make decisions while keeping data in a silo. The solution? An all-inclusive data strategy that makes sense for the organization. This article […]

The post Optimizing retail operations through a practical data strategy appeared first on LightsOnData.


Read More
Author: George Firican

Model Context Protocol Demystified: Why MCP is Everywhere

What is Model Context Protocol (MCP) and why is it suddenly being talked about everywhere? How does it support the future of agentic AI? And what happens to businesses that don’t implement it?

The short answer is MCP is the new universal standard connecting AI to trusted business context, fueling the rise of agentic AI. Organizations that ignore it risk being stuck with slow, unreliable insights while competitors gain a decisive edge.

What is Model Context Protocol?

From boardrooms to shop floors, AI is rewriting how businesses uncover insights, solve problems, and chart their futures. Yet even the most advanced AI models face a critical challenge. Without access to precise, contextualized information, their answers can fall short by being generic and lacking critical insights.

That’s where MCP comes in. MCP is a rapidly emerging standard that gives AI-powered applications, like large language models (LLM) assistants, the ability to connect to structured, real-time business context through a knowledge graph.

Think of MCP as a GPS for AI. It guides models directly to the most relevant and reliable information. Instead of building custom integrations for every tool or dataset, businesses can use MCP to give AI applications secure, standardized access to the information they need.

The result? AI systems that move beyond generic responses to deliver answers rooted in a company’s unique and current reality.

Why MCP Matters for Businesses

The rise of AI data analysts, which are LLM-powered assistants that translate natural-language questions into structured data queries, makes MCP mission-critical. Unlike traditional analytics tools that require SQL skills or dashboard expertise, an AI data analyst allows anyone to simply ask questions and get results.

These questions can be business focused, such as:

  • What’s driving our increase in customer churn?
  • How did supply chain delays impact last quarter’s revenue?
  • Are seasonal promotions improving profitability?

Answering these questions requires more than statistics. It demands contextual intelligence pulled from multiple, current data sources.

MCP ensures AI data analysts can:

  • Converse naturally. Users ask questions in plain language.
  • Ground answers in context. MCP optimizes knowledge graphs for context.
  • Be accessible to all users. No coding or data science expertise is needed.
  • Provide action-oriented insights. Deliver answers that leaders can trust.

In short, MCP is the bridge between decision-makers and the technical complexity of enterprise data.

The Business Advantages of MCP

The value of AI isn’t in generating an answer. It’s in generating the right answer. MCP makes that possible by standardizing how AI connects to business context, turning data into precise, actionable, and trusted insights.

Key benefits of MCP include:

  • Improved accuracy. AI reflects current, trusted business data.
  • Scalability across domains. Each business function, such as finance, operations, and marketing, maintains its own tailored context.
  • Reduced integration complexity. A standard framework replaces costly, custom builds.
  • Future-proof flexibility. MCP ensures continuity as new AI models and platforms emerge.
  • Greater decision confidence. Leaders act on insights that reflect real business conditions.

With MCP, organizations move from AI that’s impressive to AI that’s indispensable.

Knowledge Graphs: The Heart of MCP

At the core of MCP are knowledge graphs, which are structured maps of business entities and their relationships. They don’t just store data. They provide context.

For example:

  • A customer isn’t simply a record. They are linked to orders, support tickets, and loyalty status.
  • A product isn’t only an SKU. It’s tied to suppliers, sales channels, and performance metrics.

By tapping into these connections, AI can answer not only what happened but also why it happened and what’s likely to happen next.

Powering Ongoing Success With MCP

Organizations that put MCP into practice and support it with a knowledge graph can create, manage, and export domain-specific knowledge graphs directly to MCP servers.

With the right approach to MCP, organizations gain:

  • Domain-specific context. Each business unit builds its own tailored graph.
  • Instant AI access. MCP provides secure, standardized entry points to data.
  • Dynamic updates. Continuous refreshes keep insights accurate as conditions shift.
  • Enterprise-wide intelligence. Organizations scale not just data, but contextual intelligence across the business.

MCP doesn’t just enhance AI. It transforms AI from a useful tool into a business-critical advantage.

Supporting Real-World Use Cases Using AI-Ready Data

AI-ready data plays an essential role in delivering fast, trusted results. With this data and MCP powered by a knowledge graph, organizations can deliver measurable outcomes to domains such as:

  • Finance. Quickly explain revenue discrepancies by connecting accounting, sales, and market data.
  • Supply chain. Answer questions such as, “Which suppliers pose the highest risk to production goals?” with context-rich insights on performance, timelines, and quality.
  • Customer service. Recommend personalized strategies using data from purchase history, service records, and sentiment analysis.
  • Executive leadership. Provide faster, more reliable insights to act decisively in dynamic markets.

In an era where the right answer at the right time can define market leadership, MCP ensure AI delivers insights that are accurate, actionable, and aligned with the current business reality. From the boardroom to the shop floor, MCP helps organizations optimize AI for decision-making and use cases.

Find out more by watching a short video about MCP for AI applications.

The post Model Context Protocol Demystified: Why MCP is Everywhere appeared first on Actian.


Read More
Author: Dee Radh

No PhD? No Problem: How Accessible AI Is Making Data Science Everyone’s Business


Not long ago, manipulating large datasets, training machine learning models, or visualizing results required advanced programming skills and specialized statistical knowledge.  Today, intuitive AI tools and natural language interfaces are allowing nearly everyone – not just data scientists, engineers, and technical experts – to analyze and act on data. In fact, nearly 8 in 10 organizations now […]

The post No PhD? No Problem: How Accessible AI Is Making Data Science Everyone’s Business appeared first on DATAVERSITY.


Read More
Author: Rosaria Silipo

How an Internal AI Governance Council Drives Responsible Innovation


AI has rapidly evolved from a futuristic concept to a foundational technology, deeply embedded in the fabric of contemporary organizational processes across industries. Companies leverage AI to enhance efficiency, personalize customer interactions, and drive operational innovation. However, as AI permeates deeper into organizational structures, it brings substantial risks related to data privacy, intellectual property, compliance […]

The post How an Internal AI Governance Council Drives Responsible Innovation appeared first on DATAVERSITY.


Read More
Author: Nichole Windholz

The Data Danger of Agentic AI


Agentic AI represents a significant evolution beyond traditional rule-based AI systems and generative AI, offering unprecedented autonomy and transformative potential across various sectors. These sophisticated systems can plan, decide, and act independently, promising remarkable advances in efficiency and decision-making.  However, this high degree of autonomy, when combined with poorly governed or flawed data, can lead […]

The post The Data Danger of Agentic AI appeared first on DATAVERSITY.


Read More
Author: Samuel Bocetta

How to Future-Proof Your Data and AI Strategy


With AI systems reshaping enterprises and regulatory frameworks continuously evolving, organizations face a critical challenge: designing AI governance that protects business value without stifling innovation. But how do you future-proof your enterprise for a technology that is evolving at such an incredible pace? The answer lies in building robust data foundations that can adapt to whatever comes […]

The post How to Future-Proof Your Data and AI Strategy appeared first on DATAVERSITY.


Read More
Author: Ojas Rege