Search for:
Comparing EU and U.S. State Laws on AI: A Checklist for Proactive Compliance


The global market for artificial intelligence is evolving under two very different legal paradigms. On one side, the European Union has enacted the AI Act, the first comprehensive and enforceable regulatory regime for AI, applicable across all member states and with far-reaching extraterritorial scope. On the other, the United States continues to advance AI oversight primarily at the state level, resulting in a patchwork of rules that vary in focus, definitions, and enforcement…

The post Comparing EU and U.S. State Laws on AI: A Checklist for Proactive Compliance appeared first on DATAVERSITY.


Read More
Author: Fahad Diwan

What Makes Small Businesses’ Data Valuable to Cybercriminals?


While large corporations like Optus, Medibank, and The Iconic often dominate headlines for cybersecurity breaches, the reality is that small businesses are increasingly attractive targets for cybercriminals. Many small business owners operate under the dangerous illusion that their business is too small or insignificant to attract the attention of cybercriminals or that they have nothing of value to steal. This mindset often leads to a false sense of security…

The post What Makes Small Businesses’ Data Valuable to Cybercriminals? appeared first on DATAVERSITY.


Read More
Author: Samuel Bocetta

Ask a Data Ethicist: How Does the Use of AI Impact People’s Perceptions of You?


Last October, I wrote a column about the use of generative AI in producing a professional service. I pondered the question of whether or not others’ knowledge about the use of AI in producing a professional service – such as legal work, consulting, or creative work –  would devalue the service. My hypothesis was that […]

The post Ask a Data Ethicist: How Does the Use of AI Impact People’s Perceptions of You? appeared first on DATAVERSITY.


Read More
Author: Katrina Ingram

Mind the Gap: Agentic AI and the Risks of Autonomy


The ink is barely dry on generative AI and AI agents, and now we have a new next big thing: agentic AI. Sounds impressive. By the time this article comes out, there’s a good chance that agentic AI will be in the rear-view mirror and we’ll all be chasing after the next new big thing. […]

The post Mind the Gap: Agentic AI and the Risks of Autonomy appeared first on DATAVERSITY.


Read More
Author: Mark Cooper

Why Business-Critical AI Needs to Be Domain-Aware


We stand at a pivotal moment. Generative AI, with its large language models (LLMs) and retrieval-augmented generation (RAG) systems, promises to revolutionize how industries operate. We’ve all seen the impressive demos that can summarize articles, write code, or draft marketing copy. But when the stakes are high and an error could lead to a financial […]

The post Why Business-Critical AI Needs to Be Domain-Aware appeared first on DATAVERSITY.


Read More
Author: Andreas Blumauer

Book of the Month: “Rewiring Your Mind for AI” 


This month, we’re reviewing “Rewiring Your Mind for AI” by David Wood. In this book, Dr. Wood shows us how to think differently to leverage the benefits of artificial intelligence (AI).  The book first sets us up to think in terms of growth mindsets instead of limiting mindsets – starting with some anecdotes about how calculators and […]

The post Book of the Month: “Rewiring Your Mind for AI”  appeared first on DATAVERSITY.


Read More
Author: Mark Horseman

How to Overcome Five Key GenAI Deployment Challenges


Generative AI (GenAI) continues to provide significant business value across many use cases and industries. But despite the many successful customer experiences, GenAI is also proving to be challenging for some businesses to get right and deploy across their organizations in full production. As a result, plenty of projects are getting stuck in planning, experimentation, […]

The post How to Overcome Five Key GenAI Deployment Challenges appeared first on DATAVERSITY.


Read More
Author: Jim Johnson

Open Data Fabric: Rethinking Data Architecture for AI at Scale


Enterprise AI agents are moving from proof-of-concept to production at unprecedented speed. From customer service chatbots to financial analysis tools, organizations across various industries are deploying agents to handle critical business functions. Yet a troubling pattern is emerging; agents that perform brilliantly in controlled demos are struggling when deployed against real enterprise data environments. The problem […]

The post Open Data Fabric: Rethinking Data Architecture for AI at Scale appeared first on DATAVERSITY.


Read More
Author: Prat Moghe

Optimizing retail operations through a practical data strategy


Given the pace of change in the retail sector, impactful decisions can be a competitive advantage, but many organizations are still in the dark. They’re not operating with actionable insights… trusting their gut to make decisions while keeping data in a silo. The solution? An all-inclusive data strategy that makes sense for the organization. This article […]

The post Optimizing retail operations through a practical data strategy appeared first on LightsOnData.


Read More
Author: George Firican

Model Context Protocol Demystified: Why MCP is Everywhere

What is Model Context Protocol (MCP) and why is it suddenly being talked about everywhere? How does it support the future of agentic AI? And what happens to businesses that don’t implement it?

The short answer is MCP is the new universal standard connecting AI to trusted business context, fueling the rise of agentic AI. Organizations that ignore it risk being stuck with slow, unreliable insights while competitors gain a decisive edge.

What is Model Context Protocol?

From boardrooms to shop floors, AI is rewriting how businesses uncover insights, solve problems, and chart their futures. Yet even the most advanced AI models face a critical challenge. Without access to precise, contextualized information, their answers can fall short by being generic and lacking critical insights.

That’s where MCP comes in. MCP is a rapidly emerging standard that gives AI-powered applications, like large language models (LLM) assistants, the ability to connect to structured, real-time business context through a knowledge graph.

Think of MCP as a GPS for AI. It guides models directly to the most relevant and reliable information. Instead of building custom integrations for every tool or dataset, businesses can use MCP to give AI applications secure, standardized access to the information they need.

The result? AI systems that move beyond generic responses to deliver answers rooted in a company’s unique and current reality.

Why MCP Matters for Businesses

The rise of AI data analysts, which are LLM-powered assistants that translate natural-language questions into structured data queries, makes MCP mission-critical. Unlike traditional analytics tools that require SQL skills or dashboard expertise, an AI data analyst allows anyone to simply ask questions and get results.

These questions can be business focused, such as:

  • What’s driving our increase in customer churn?
  • How did supply chain delays impact last quarter’s revenue?
  • Are seasonal promotions improving profitability?

Answering these questions requires more than statistics. It demands contextual intelligence pulled from multiple, current data sources.

MCP ensures AI data analysts can:

  • Converse naturally. Users ask questions in plain language.
  • Ground answers in context. MCP optimizes knowledge graphs for context.
  • Be accessible to all users. No coding or data science expertise is needed.
  • Provide action-oriented insights. Deliver answers that leaders can trust.

In short, MCP is the bridge between decision-makers and the technical complexity of enterprise data.

The Business Advantages of MCP

The value of AI isn’t in generating an answer. It’s in generating the right answer. MCP makes that possible by standardizing how AI connects to business context, turning data into precise, actionable, and trusted insights.

Key benefits of MCP include:

  • Improved accuracy. AI reflects current, trusted business data.
  • Scalability across domains. Each business function, such as finance, operations, and marketing, maintains its own tailored context.
  • Reduced integration complexity. A standard framework replaces costly, custom builds.
  • Future-proof flexibility. MCP ensures continuity as new AI models and platforms emerge.
  • Greater decision confidence. Leaders act on insights that reflect real business conditions.

With MCP, organizations move from AI that’s impressive to AI that’s indispensable.

Knowledge Graphs: The Heart of MCP

At the core of MCP are knowledge graphs, which are structured maps of business entities and their relationships. They don’t just store data. They provide context.

For example:

  • A customer isn’t simply a record. They are linked to orders, support tickets, and loyalty status.
  • A product isn’t only an SKU. It’s tied to suppliers, sales channels, and performance metrics.

By tapping into these connections, AI can answer not only what happened but also why it happened and what’s likely to happen next.

Powering Ongoing Success With MCP

Organizations that put MCP into practice and support it with a knowledge graph can create, manage, and export domain-specific knowledge graphs directly to MCP servers.

With the right approach to MCP, organizations gain:

  • Domain-specific context. Each business unit builds its own tailored graph.
  • Instant AI access. MCP provides secure, standardized entry points to data.
  • Dynamic updates. Continuous refreshes keep insights accurate as conditions shift.
  • Enterprise-wide intelligence. Organizations scale not just data, but contextual intelligence across the business.

MCP doesn’t just enhance AI. It transforms AI from a useful tool into a business-critical advantage.

Supporting Real-World Use Cases Using AI-Ready Data

AI-ready data plays an essential role in delivering fast, trusted results. With this data and MCP powered by a knowledge graph, organizations can deliver measurable outcomes to domains such as:

  • Finance. Quickly explain revenue discrepancies by connecting accounting, sales, and market data.
  • Supply chain. Answer questions such as, “Which suppliers pose the highest risk to production goals?” with context-rich insights on performance, timelines, and quality.
  • Customer service. Recommend personalized strategies using data from purchase history, service records, and sentiment analysis.
  • Executive leadership. Provide faster, more reliable insights to act decisively in dynamic markets.

In an era where the right answer at the right time can define market leadership, MCP ensure AI delivers insights that are accurate, actionable, and aligned with the current business reality. From the boardroom to the shop floor, MCP helps organizations optimize AI for decision-making and use cases.

Find out more by watching a short video about MCP for AI applications.

The post Model Context Protocol Demystified: Why MCP is Everywhere appeared first on Actian.


Read More
Author: Dee Radh

No PhD? No Problem: How Accessible AI Is Making Data Science Everyone’s Business


Not long ago, manipulating large datasets, training machine learning models, or visualizing results required advanced programming skills and specialized statistical knowledge.  Today, intuitive AI tools and natural language interfaces are allowing nearly everyone – not just data scientists, engineers, and technical experts – to analyze and act on data. In fact, nearly 8 in 10 organizations now […]

The post No PhD? No Problem: How Accessible AI Is Making Data Science Everyone’s Business appeared first on DATAVERSITY.


Read More
Author: Rosaria Silipo

How an Internal AI Governance Council Drives Responsible Innovation


AI has rapidly evolved from a futuristic concept to a foundational technology, deeply embedded in the fabric of contemporary organizational processes across industries. Companies leverage AI to enhance efficiency, personalize customer interactions, and drive operational innovation. However, as AI permeates deeper into organizational structures, it brings substantial risks related to data privacy, intellectual property, compliance […]

The post How an Internal AI Governance Council Drives Responsible Innovation appeared first on DATAVERSITY.


Read More
Author: Nichole Windholz

The Data Danger of Agentic AI


Agentic AI represents a significant evolution beyond traditional rule-based AI systems and generative AI, offering unprecedented autonomy and transformative potential across various sectors. These sophisticated systems can plan, decide, and act independently, promising remarkable advances in efficiency and decision-making.  However, this high degree of autonomy, when combined with poorly governed or flawed data, can lead […]

The post The Data Danger of Agentic AI appeared first on DATAVERSITY.


Read More
Author: Samuel Bocetta

How to Future-Proof Your Data and AI Strategy


With AI systems reshaping enterprises and regulatory frameworks continuously evolving, organizations face a critical challenge: designing AI governance that protects business value without stifling innovation. But how do you future-proof your enterprise for a technology that is evolving at such an incredible pace? The answer lies in building robust data foundations that can adapt to whatever comes […]

The post How to Future-Proof Your Data and AI Strategy appeared first on DATAVERSITY.


Read More
Author: Ojas Rege

Data Governance and CSR: Evolving Together
In a world where every claim your organization makes — about sustainability, equity, or social impact — is scrutinized by regulators, investors, and the public, one truth stands out: Your data has never mattered more. Corporate Social Responsibility (CSR) isn’t just about good intentions — it is about trustworthy, transparent data that stands up to […]


Read More
Author: Robert S. Seiner

Tending the Unicorn Farm: A Business Case for Quantum Computing
Welcome to the whimsical wide world of unicorn farming. Talking about quantum computing is a bit like tending to your unicorn farm, in that a lossless chip (at the time of writing) does not exist. So, largely, the realm of quantum computing is just slightly faster than normal compute power. The true parallel nature of […]


Read More
Author: Mark Horseman

The Five Levels Essential to Scaling Your Data Strategy
Scaling your data strategy will inevitably result in winners and losers. Some work out the system to apply in their organization and skillfully tailor it to meet the demands and context of their organization, and some don’t or can’t. It’s something of a game.  But how can you position yourself as a winner? Read on […]


Read More
Author: Jason Foster

Why Data Governance Still Matters in the Age of AI
At a recent conference, I witnessed something that’s become far too common in data leadership circles: genuine surprise that chief data officers consistently cite culture — not technology — as their greatest challenge. Despite a decade of research and experience pointing to the same root cause, conversations still tend to focus on tools rather than […]


Read More
Author: Christine Haskell

Data Speaks for Itself: Is Your Data Quality Management Practice Ready for AI?
While everyone is asking if their data is ready for AI, I want to ask a somewhat different question: Is your data quality management (DQM) program ready for AI?  In my opinion, you need to be able to answer yes to the following four questions before you can have any assurance you are ready to […]


Read More
Author: Dr. John Talburt

A Step Ahead: From Acts to Aggregates — Record-ness and Data-ness in Practice
Introduction  What is the difference between records and data? What differentiates records managers from data managers? Do these distinctions still matter as organizations take the plunge into artificial intelligence? Discussions that attempt to distinguish between records and data frequently articulate a heuristic for differentiation. “These items are records; those items are data.” Many organizations have […]


Read More
Author: The MITRE Corporation

Why Federated Knowledge Graphs are the Missing Link in Your AI Strategy

A recent McKinsey report titled “Superagency in the workplace: Empowering people to unlock AI’s full potential ” notes that “Over the next three years, 92 percent of companies plan to increase their AI investments”. They go on to say that companies need to think strategically about how they incorporate AI. Two areas that are highlighted are “federated governance models” and “human centricity.” Where teams can create and understand AI models that work for them, while having a centralized framework to monitor and manage these models. This is where the federated knowledge graph comes into play.

For data and IT leaders architecting modern enterprise platforms, the federated knowledge graph is a powerful architecture and design pattern for data management, providing semantic integration across distributed data ecosystems. When implemented with the Actian Data Intelligence Platform, a federated knowledge graph becomes the foundation for context-aware automation, bridging your data mesh or data fabric with scalable and explainable AI. 

Knowledge Graph vs. Federated Knowledge Graph

A knowledge graph represents data as a network of entities (nodes) and relationships (edges), enriched with semantics (ontologies, taxonomies, metadata). Rather than organizing data by rows and columns, it models how concepts relate to one another. 

An example being, “Customer X purchased Product Y from Store Z on Date D.”  

A federated knowledge graph goes one step further. It connects disparate, distributed datasets across your organization into a virtual semantic graph without moving the underlying data from the systems.  

In other words: 

  • You don’t need a centralized data lake. 
  • You don’t need to harmonize all schemas up front. 
  • You build a logical layer that connects data using shared meaning. 

This enables both humans and machines to navigate the graph to answer questions, infer new knowledge, or automate actions, all based on context that spans multiple systems. 

Real-World Example of a Federated Knowledge Graph in Action

Your customer data lives in a cloud-based CRM, order data in SAP, and web analytics in a cloud data warehouse. Traditionally, you’d need a complex extract, transform, and load (ETL) pipeline to join these datasets.   

With a federated knowledge graph: 

  • “Customer,” “user,” and “client” can be resolved as one unified entity. 
  • The relationships between their behaviors, purchases, and support tickets are modeled as edges. 
  • More importantly, AI can reason with questions like “Which high-value customers have experienced support friction that correlates with lower engagement?” 

This kind of insight is what drives intelligent automation.  

Why Federated Knowledge Graphs Matter

Knowledge graphs are currently utilized in various applications, particularly in recommendation engines. However, the federated approach addresses cross-domain integration, which is especially important in large enterprises. 

Federation in this context means: 

  • Data stays under local control (critical for a data mesh structure). 
  • Ownership and governance remain decentralized. 
  • Real-time access is possible without duplication. 
  • Semantics are shared globally, enabling AI systems to function across domains. 

This makes federated knowledge graphs especially useful in environments where data is distributed by design–across departments, cloud platforms, and business units. 

How Federated Knowledge Graphs Support AI Automation

AI automation relies not only on data, but also on understanding. A federated knowledge graph provides that understanding in several ways: 

  • Semantic Unification: Resolves inconsistencies in naming, structure, and meaning across datasets. 
  • Inference and Reasoning: AI models can use graph traversal and ontologies to derive new insights. 
  • Explainability: Federated knowledge graphs store the paths behind AI decisions, allowing for greater transparency and understanding. This is critical for compliance and trust. 

For data engineers and IT teams, this means less time spent maintaining pipelines and more time enabling intelligent applications.  

Complementing Data Mesh and Data Fabric

Federated knowledge graphs are not just an addition to your modern data architecture; they amplify its capabilities. For instance: 

  • In a data mesh architecture, domains retain control of their data products, but semantics can become fragmented. Federated knowledge graphs provide a global semantic layer that ensures consistent meaning across those domains, without imposing centralized ownership. 
  • In a data fabric design approach, the focus is on automated data integration, discovery, and governance. Federated knowledge graphs serve as the reasoning layer on top of the fabric, enabling AI systems to interpret relationships, not just access raw data. 

Not only do they complement each other in a complex architectural setup, but when powered by a federated knowledge graph, they enable a scalable, intelligent data ecosystem. 

A Smarter Foundation for AI

For technical leaders, AI automation is about giving models the context to reason and act effectively. A federated knowledge graph provides the scalable, semantic foundation that AI needs, and the Actian Data Intelligence Platform makes it a reality.

The Actian Data Intelligence Platform is built on a federated knowledge graph, transforming your fragmented data landscape into a connected, AI-ready knowledge layer, delivering an accessible implementation on-ramp through: 

  • Data Access Without Data Movement: You can connect to distributed data sources (cloud, on-prem, hybrid) without moving or duplicating data, enabling semantic integration. 
  • Metadata Management: You can apply business metadata and domain ontologies to unify entity definitions and relationships across silos, creating a shared semantic layer for AI models. 
  • Governance and Lineage: You can track the origin, transformations, and usage of data across your pipeline, supporting explainable AI and regulatory compliance. 
  • Reusability: You can accelerate deployment with reusable data models and power multiple applications (such as customer 360 and predictive maintenance) using the same federated knowledge layer. 

Get Started With Actian Data Intelligence

Take a product tour today to experience data intelligence powered by a federated knowledge graph. 

The post Why Federated Knowledge Graphs are the Missing Link in Your AI Strategy appeared first on Actian.


Read More
Author: Actian Corporation

Everything You Need to Know About Synthetic Data


Synthetic data sounds like something out of science fiction, but it’s fast becoming the backbone of modern machine learning and data privacy initiatives. It enables faster development, stronger security, and fewer ethical headaches – and it’s evolving quickly.  So if you’ve ever wondered what synthetic data really is, how it’s made, and why it’s taking center […]

The post Everything You Need to Know About Synthetic Data appeared first on DATAVERSITY.


Read More
Author: Nahla Davies

Data Observability vs. Data Monitoring

Two pivotal concepts have emerged at the forefront of modern data infrastructure management, both aimed at protecting the integrity of datasets and data pipelines: data observability and data monitoring. While they may sound similar, these practices differ in their objectives, execution, and impact. Understanding their distinctions, as well as how they complement each other, can empower teams to make informed decisions, detect issues faster, and improve overall data trustworthiness.

What is Data Observability?

Data Observability is the practice of understanding and monitoring data’s behavior, quality, and performance as it flows through a system. It provides insights into data quality, lineage, performance, and reliability, enabling teams to detect and resolve issues proactively.

Components of Data Observability

Data observability comprises five key pillars, which answer five key questions about datasets.

  1. Freshness: Is the data up to date?
  2. Volume: Is the expected amount of data present?
  3. Schema: Have there been any unexpected changes to the data structure?
  4. Lineage: Where does the data come from, and how does it flow across systems?
  5. Distribution: Are data values within expected ranges and formats?

These pillars allow teams to gain end-to-end visibility across pipelines, supporting proactive incident detection and root cause analysis.

Benefits of Implementing Data Observability

  • Proactive Issue Detection: Spot anomalies before they affect downstream analytics or decision-making.
  • Reduced Downtime: Quickly identify and resolve data pipeline issues, minimizing business disruption.
  • Improved Trust in Data: Enhanced transparency and accountability increase stakeholders’ confidence in data assets.
  • Operational Efficiency: Automation of anomaly detection reduces manual data validation.

What is Data Monitoring?

Data monitoring involves the continuous tracking of data and systems to identify errors, anomalies, or performance issues. It typically includes setting up alerts, dashboards, and metrics to oversee system operations and ensure data flows as expected.

Components of Data Monitoring

Core elements of data monitoring include the following.

  1. Threshold Alerts: Notifications triggered when data deviates from expected norms.
  2. Dashboards: Visual interfaces showing system performance and data health metrics.
  3. Log Collection: Capturing event logs to track errors and system behavior.
  4. Metrics Tracking: Monitoring KPIs such as latency, uptime, and throughput.

Monitoring tools are commonly used to catch operational failures or data issues after they occur.

Benefits of Data Monitoring

  • Real-Time Awareness: Teams are notified immediately when something goes wrong.
  • Improved SLA Management: Ensures systems meet service-level agreements by tracking uptime and performance.
  • Faster Troubleshooting: Log data and metrics help pinpoint issues.
  • Baseline Performance Management: Helps maintain and optimize system operations over time.

Key Differences Between Data Observability and Data Monitoring

While related, data observability and data monitoring are not interchangeable. They serve different purposes and offer unique value to modern data teams.

Scope and Depth of Analysis

  • Monitoring offers a surface-level view based on predefined rules and metrics. It answers questions like, “Is the data pipeline running?”
  • Observability goes deeper, allowing teams to understand why an issue occurred and how it affects other parts of the system. It analyzes metadata and system behaviors to provide contextual insights.

Proactive vs. Reactive Approaches

  • Monitoring is largely reactive. Alerts are triggered after an incident occurs.
  • Observability is proactive, enabling the prediction and prevention of failures through pattern analysis and anomaly detection.

Data Insights and Decision-Making

  • Monitoring is typically used for operational awareness and uptime.
  • Observability helps drive strategic decisions by identifying long-term trends, data quality issues, and pipeline inefficiencies.

How Data Observability and Monitoring Work Together

Despite their differences, data observability and monitoring are most powerful when used in tandem. Together, they create a comprehensive view of system health and data reliability.

Complementary Roles in Data Management

Monitoring handles alerting and immediate issue recognition, while observability offers deep diagnostics and context. This combination ensures that teams are not only alerted to issues but are also equipped to resolve them effectively.

For example, a data monitoring system might alert a team to a failed ETL job. A data observability platform would then provide lineage and metadata context to show how the failure impacts downstream dashboards and provide insight into what caused the failure in the first place.

Enhancing System Reliability and Performance

When integrated, observability and monitoring ensure:

  • Faster MTTR (Mean Time to Resolution).
  • Reduced false positives.
  • More resilient pipelines.
  • Clear accountability for data errors.

Organizations can shift from firefighting data problems to implementing long-term fixes and improvements.

Choosing the Right Strategy for An Organization

An organization’s approach to data health should align with business objectives, team structure, and available resources. A thoughtful strategy ensures long-term success.

Assessing Organizational Needs

Start by answering the following questions.

  • Is the organization experiencing frequent data pipeline failures?
  • Do stakeholders trust the data they use?
  • How critical is real-time data delivery to the business?

Organizations with complex data flows, strict compliance requirements, or customer-facing analytics need robust observability. Smaller teams may start with monitoring and scale up.

Evaluating Tools and Technologies

Tools for data monitoring include:

  • Prometheus
  • Grafana
  • Datadog

Popular data observability platforms include:

  • Monte Carlo
  • Actian Data Intelligence Platform
  • Bigeye

Consider ease of integration, scalability, and the ability to customize alerts or data models when selecting a platform.

Implementing a Balanced Approach

A phased strategy often works best:

  1. Establish Monitoring First. Track uptime, failures, and thresholds.
  2. Introduce Observability. Add deeper diagnostics like data lineage tracking, quality checks, and schema drift detection.
  3. Train Teams. Ensure teams understand how to interpret both alert-driven and context-rich insights.

Use Actian to Enhance Data Observability and Data Monitoring

Data observability and data monitoring are both essential to ensuring data reliability, but they serve distinct functions. Monitoring offers immediate alerts and performance tracking, while observability provides in-depth insight into data systems’ behavior. Using both concepts together with the tools and solutions provided by Actian, organizations can create a resilient, trustworthy, and efficient data ecosystem that supports both operational excellence and strategic growth.

Actian offers a suite of solutions that help businesses modernize their data infrastructure while gaining full visibility and control over their data systems.

With the Actian Data Intelligence Platform, organizations can:

  • Monitor Data Pipelines in Real-Time. Track performance metrics, latency, and failures across hybrid and cloud environments.
  • Gain Deep Observability. Leverage built-in tools for data lineage, anomaly detection, schema change alerts, and freshness tracking.
  • Simplify Integration. Seamlessly connect to existing data warehouses, ETL tools, and BI platforms.
  • Automate Quality Checks. Establish rule-based and AI-driven checks for consistent data reliability.

Organizations using Actian benefit from increased system reliability, reduced downtime, and greater trust in their analytics. Whether through building data lakes, powering real-time analytics, or managing compliance, Actian empowers data teams with the tools they need to succeed.

The post Data Observability vs. Data Monitoring appeared first on Actian.


Read More
Author: Actian Corporation

Beyond Pilots: Reinventing Enterprise Operating Models with AI


The enterprise AI landscape has reached an inflection point. After years of pilots and proof-of-concepts, organizations are now committing unprecedented resources to AI, with double-digit budget increases expected across industries in 2025. This isn’t merely about technological adoption. It reflects a deep rethinking of how businesses operate at scale. The urgency is clear: 70% of the software used […]

The post Beyond Pilots: Reinventing Enterprise Operating Models with AI appeared first on DATAVERSITY.


Read More
Author: Gautam Singh

External Data Strategy: Governance, Implementation, and Success (Part 2)


In Part 1 of this series, we established the strategic foundation for external data success: defining your organizational direction, determining specific data requirements, and selecting the right data providers. We also introduced the critical concept of external data stewardship — identifying key stakeholders who bridge the gap between business requirements and technical implementation. This second part […]

The post External Data Strategy: Governance, Implementation, and Success (Part 2) appeared first on DATAVERSITY.


Read More
Author: Subasini Periyakaruppan