Search for:
Data Monetization: The Holy Grail or the Road to Ruin?


Unlocking the value of data is a key focus for business leaders, especially the CIO. While in its simplest form, data can lead to better insights and decision-making, companies are pursuing an entirely different and more advanced agenda: the holy grail of data monetization. This concept involves aggregating a variety of both structured and unstructured […]

The post Data Monetization: The Holy Grail or the Road to Ruin? appeared first on DATAVERSITY.


Read More
Author: Tony Klimas

Unleashing the Power of People and Culture: The Ultimate Drivers of Data Governance Success


In the high-stakes world of data governance, where organizations strive to protect and leverage their most valuable asset, one truth stands out: technology alone won’t get you there. The secret sauce? People and culture. They are the lifeblood of any successful data governance strategy, the pulse that drives data literacy, and the force that propels […]

The post Unleashing the Power of People and Culture: The Ultimate Drivers of Data Governance Success appeared first on DATAVERSITY.


Read More
Author: Gopi Maren

Data Warehousing Demystified: Your Guide From Basics to Breakthroughs

Table of contents 

Understanding the Basics

What is a Data Warehouse?

The Business Imperative of Data Warehousing

The Technical Role of Data Warehousing

Understanding the Differences: Databases, Data Warehouses, and Analytics Databases

The Human Side of Data: Key User Personas and Their Pain Points

Data Warehouse Use Cases For Modern Organizations

6 Common Business Use Cases

9 Technical Use Cases

Understanding the Basics

Welcome to data warehousing 101. For those of you who remember when “cloud” only meant rain and “big data” was just a database that ate too much, buckle up—we’ve come a long way. Here’s an overview:

What is a Data Warehouse?

Data warehouses are large storage systems where data from various sources is collected, integrated, and stored for later analysis. Data warehouses are typically used in business intelligence (BI) and reporting scenarios where you need to analyze large amounts of historical and real-time data. They can be deployed on-premises, on a cloud (private or public), or in a hybrid manner.

Think of a data warehouse as the Swiss Army knife of the data world – it’s got everything you need, but unlike that dusty tool in your drawer, you’ll actually use it every day!

Prominent examples include Actian Data Platform, Amazon Redshift, Google BigQuery, Snowflake, Microsoft Azure Synapse Analytics, and IBM Db2 Warehouse, among others.

Proper data consolidation, integration, and seamless connectivity with BI tools are crucial for a data strategy and visibility into the business. A data warehouse without this holistic view provides an incomplete narrative, limiting the potential insights that can be drawn from the data.

“Proper data consolidation, integration, and seamless connectivity with BI tools are crucial aspects of a data strategy. A data warehouse without this holistic view provides an incomplete narrative, limiting the potential insights that can be drawn from the data.”

The Business Imperative of Data Warehousing

Data warehouses are instrumental in enabling organizations to make informed decisions quickly and efficiently. The primary value of a data warehouse lies in its ability to facilitate a comprehensive view of an organization’s data landscape, supporting strategic business functions such as real-time decision-making, customer behavior analysis, and long-term planning.

But why is a data warehouse so crucial for modern businesses? Let’s dive in.

A data warehouse is a strategic layer that is essential for any organization looking to maintain competitiveness in a data-driven world. The ability to act quickly on analyzed data translates to improved operational efficiencies, better customer relationships, and enhanced profitability.

The Technical Role of Data Warehousing

The primary function of a data warehouse is to facilitate analytics, not to perform analytics itself. The BI team configures the data warehouse to align with its analytical needs. Essentially, a data warehouse acts as a structured repository, comprising tables of rows and columns of carefully curated and frequently updated data assets. These assets feed BI applications that drive analytics.

“The primary function of a data warehouse is to facilitate analytics, not to perform analytics itself.”

Achieving the business imperatives of data warehousing relies heavily on these four key technical capabilities:

1. Real-Time Data Processing: This is critical for applications that require immediate action, such as fraud detection systems, real-time customer interaction management, and dynamic pricing strategies. Real-time data processing in a data warehouse is like a barista making your coffee to order–it happens right when you need it, tailored to your specific requirements.

2. Scalability and Performance: Modern data warehouses must handle large datasets and support complex queries efficiently. This capability is particularly vital in industries such as retail, finance, and telecommunications, where the ability to scale according to demand is necessary for maintaining operational efficiency and customer satisfaction.

3. Data Quality and Accessibility: The quality of insights directly correlates with the quality of data ingested and stored in the data warehouse. Ensuring data is accurate, clean, and easily accessible is paramount for effective analysis and reporting. Therefore, it’s crucial to consider the entire data chain when crafting a data strategy, rather than viewing the warehouse in isolation.

4. Advanced Capabilities: Modern data warehouses are evolving to meet new challenges and opportunities:

      • Data virtualization: Allowing queries across multiple data sources without physical data movement.
      • Integration with data lakes: Enabling analysis of both structured and unstructured data.
      • In-warehouse machine learning: Supporting the entire ML lifecycle, from model training to deployment, directly within the warehouse environment.

“In the world of data warehousing, scalability isn’t just about handling more data—it’s about adapting to the ever-changing landscape of business needs.”

Understanding the Differences: Databases, Data Warehouses, and Analytics Databases

Databases, data warehouses, and analytics databases serve distinct purposes in the realm of data management, with each optimized for specific use cases and functionalities.

A database is a software system designed to efficiently store, manage, and retrieve structured data. It is optimized for Online Transaction Processing (OLTP), excelling at handling numerous small, discrete transactions that support day-to-day operations. Examples include MySQL, PostgreSQL, and MongoDB. While databases are adept at storing and retrieving data, they are not specifically designed for complex analytical querying and reporting.

Data warehouses, on the other hand, are specialized databases designed to store and manage large volumes of structured, historical data from multiple sources. They are optimized for analytical processing, supporting complex queries, aggregations, and reporting. Data warehouses are designed for Online Analytical Processing (OLAP), using techniques like dimensional modeling and star schemas to facilitate complex queries across large datasets. Data warehouses transform and integrate data from various operational systems into a unified, consistent format for analysis. Examples include Actian Data Platform, Amazon Redshift, Snowflake, and Google BigQuery.

Analytics databases, also known as analytical databases, are a subset of databases optimized specifically for analytical processing. They offer advanced features and capabilities for querying and analyzing large datasets, making them well-suited for business intelligence, data mining, and decision support. Analytics databases bridge the gap between traditional databases and data warehouses, offering features like columnar storage to accelerate analytical queries while maintaining some transactional capabilities. Examples include Actian Vector, Exasol, and Vertica. While analytics databases share similarities with traditional databases, they are specialized for analytical workloads and may incorporate features commonly associated with data warehouses, such as columnar storage and parallel processing.

“In the data management spectrum, databases, data warehouses, and analytics databases each play distinct roles. While all data warehouses are databases, not all databases are data warehouses. Data warehouses are specifically tailored for analytical use cases. Analytics databases bridge the gap, but aren’t necessarily full-fledged data warehouses, which often encompass additional components and functionalities beyond pure analytical processing.”

The Human Side of Data: Key User Personas and Their Pain Points

Welcome to Data Warehouse Personalities 101. No Myers-Briggs here—just SQL, Python, and a dash of data-induced delirium. Let’s see who’s who in this digital zoo.

Note: While these roles are presented distinctly, in practice they often overlap or merge, especially in organizations of varying sizes and across different industries. The following personas are illustrative, designed to highlight the diverse perspectives and challenges related to data warehousing across common roles.

  1. DBAs are responsible for the technical maintenance, security, performance, and reliability of data warehouses. “As a DBA, I need to ensure our data warehouse operates efficiently and securely, with minimal downtime, so that it consistently supports high-volume data transactions and accessibility for authorized users.”
  2. Data analysts specialize in processing and analyzing data to extract insights, supporting decision-making and strategic planning. “As a data analyst, I need robust data extraction and query capabilities from our data warehouse, so I can analyze large datasets accurately and swiftly to provide timely insights to our decision-makers.”
  3. BI analysts focus on creating visualizations, reports, and dashboards from data to directly support business intelligence activities. “As a BI analyst, I need a data warehouse that integrates seamlessly with BI tools to facilitate real-time reporting and actionable business insights.”
  4. Data engineers manage the technical infrastructure and architecture that supports the flow of data into and out of the data warehouse. “As a data engineer, I need to build and maintain a scalable and efficient pipeline that ensures clean, well-structured data is consistently available for analysis and reporting.”
  5. Data scientists use advanced analytics techniques, such as machine learning and predictive modeling, to create algorithms that predict future trends and behaviors. “As a data scientist, I need the data warehouse to handle complex data workloads and provide the computational power necessary to develop, train, and deploy sophisticated models.”
  6. Compliance officers ensure that data management practices comply with regulatory requirements and company policies. “As a compliance officer, I need the data warehouse to enforce data governance practices that secure sensitive information and maintain audit trails for compliance reporting.”
  7. IT managers oversee the IT infrastructure and ensure that technological resources meet the strategic needs of the organization. “As an IT manager, I need a data warehouse that can scale resources efficiently to meet fluctuating demands without overspending on infrastructure.”
  8. Risk managers focus on identifying, managing, and mitigating risks related to data security and operational continuity. “As a risk manager, I need robust disaster recovery capabilities in the data warehouse to protect critical data and ensure it is recoverable in the event of a disaster.”

Data Warehouse Use Cases For Modern Organizations

In this section, we’ll feature common use cases for both the business and IT sides of the organization.

6 Common Business Use Cases

This section highlights how data warehouses directly support critical business objectives and strategies.

1. Supply Chain and Inventory Management: Enhances supply chain visibility and inventory control by analyzing procurement, storage, and distribution data. Think of it as giving your supply chain a pair of X-ray glasses—suddenly, you can see through all the noise and spot exactly where that missing shipment of left-handed widgets went.

Examples:

        • Retail: Optimizing stock levels and reorder points based on sales forecasts and seasonal trends to minimize stockouts and overstock situations.
        • Manufacturing: Tracking component supplies and production schedules to ensure timely order fulfillment and reduce manufacturing delays.
        • Pharmaceuticals: Ensuring drug safety and availability by monitoring supply chains for potential disruptions and managing inventory efficiently.

2. Customer 360 Analytics: Enables a comprehensive view of customer interactions across multiple touchpoints, providing insights into customer behavior, preferences, and loyalty.

Examples:

        • Retail: Analyzing purchase history, online and in-store interactions, and customer service records to tailor marketing strategies and enhance customer experience (CX).
        • Banking: Integrating data from branches, online banking, and mobile apps to create personalized banking services and improve customer retention.
        • Telecommunications: Leveraging usage data, service interaction history, and customer feedback to optimize service offerings and improve customer satisfaction.

3. Operational Efficiency: Improves the efficiency of operations by analyzing workflows, resource allocations, and production outputs to identify bottlenecks and optimize processes. It’s the business equivalent of finding the perfect traffic route to work—except instead of avoiding road construction, you’re sidestepping inefficiencies and roadblocks to productivity.

Examples:

        • Manufacturing: Monitoring production lines and supply chain data to reduce downtime and improve production rates.
        • Healthcare: Streamlining patient flow from registration to discharge to enhance patient care and optimize resource utilization.
        • Logistics: Analyzing route efficiency and warehouse operations to reduce delivery times and lower operational costs.

4. Financial Performance Analysis: Offers insights into financial health through revenue, expense, and profitability analysis, helping companies make informed financial decisions.

Examples:

        • Finance: Tracking and analyzing investment performance across different portfolios to adjust strategies according to market conditions.
        • Real Estate: Evaluating property investment returns and operating costs to guide future investments and development strategies.
        • Retail: Assessing the profitability of different store locations and product lines to optimize inventory and pricing strategies.

5. Risk Management and Compliance: Helps organizations manage risk and ensure compliance with regulations by analyzing transaction data and audit trails. It’s like having a super-powered compliance officer who can spot a regulatory red flag faster than you can say “GDPR.”

Examples:

        • Banking: Detecting patterns indicative of fraudulent activity and ensuring compliance with anti-money laundering laws.
        • Healthcare: Monitoring for compliance with healthcare standards and regulations, such as HIPAA, by analyzing patient data handling and privacy measures.
        • Energy: Assessing and managing risks related to energy production and distribution, including compliance with environmental and safety regulations.

6. Market and Sales Analysis: Analyzes market trends and sales data to inform strategic decisions about product development, marketing, and sales strategies.

Examples:

        • eCommerce: Tracking online customer behavior and sales trends to adjust marketing campaigns and product offerings in real time.
        • Automotive: Analyzing regional sales data and customer preferences to inform marketing efforts and align production with demand.
        • Entertainment: Evaluating the performance of media content across different platforms to guide future production and marketing investments.

These use cases demonstrate how data warehouses have become the backbone of data-driven decision making for organizations. They’ve evolved from mere data repositories into critical business tools.

In an era where data is often called “the new oil,” data warehouses serve as the refineries, turning that raw resource into high-octane business fuel. The real power of data warehouses lies in their ability to transform vast amounts of data into actionable insights, driving strategic decisions across all levels of an organization.

9 Technical Use Cases

Ever wonder how boardroom strategies transform into digital reality? This section pulls back the curtain on the technical wizardry of data warehousing. We’ll explore nine use cases that showcase how data warehouse technologies turn business visions into actionable insights and competitive advantages. From powering machine learning models to ensuring regulatory compliance, let’s dive into the engine room of modern data-driven decision making.

1. Data Science and Machine Learning: Data warehouses can store and process large datasets used for machine learning models and statistical analysis, providing the computational power needed for data scientists to train and deploy models.

Key features:

        1. Built-in support for machine learning algorithms and libraries (like TensorFlow).
        2. High-performance data processing capabilities for handling large datasets (like Apache Spark).
        3. Tools for deploying and monitoring machine learning models (like MLflow).

2. Data as a Service (DaaS): Companies can use cloud data warehouses to offer cleaned and curated data to external clients or internal departments, supporting various use cases across industries.

Key features:

        1. Robust data integration and transformation capabilities that ensure data accuracy and usability (using tools like Actian DataConnect, Actian Data Platform for data integration, and Talend).
        2. Multi-tenancy and secure data isolation to manage data access (features like those in Amazon Redshift).
        3. APIs for seamless data access and integration with other applications (such as RESTful APIs).
        4. Built-in data sharing tools (features like those in Snowflake).

3. Regulatory Compliance and Reporting: Many organizations use cloud data warehouses to meet compliance requirements by storing and managing access to sensitive data in a secure, auditable manner. It’s like having a digital paper trail that would make even the most meticulous auditor smile. No more drowning in file cabinets!

Key features:

        1. Encryption of data at rest and in transit (technologies like AES encryption).
        2. Comprehensive audit trails and role-based access control (features like those available in Oracle Autonomous Data Warehouse).
        3. Adherence to global compliance standards like GDPR and HIPAA (using compliance frameworks such as those provided by Microsoft Azure).

4. Administration and Observability: Facilitates the management of data warehouse platforms and enhances visibility into system operations and performance. Consider it your data warehouse’s health monitor—keeping tabs on its vital signs so you can diagnose issues before they become critical.

Key features:

        1. A platform observability dashboard to monitor and manage resources, performance, and costs (as seen in Actian Data Platform, or Google Cloud’s operations suite).
        2. Comprehensive user access controls to ensure data security and appropriate access (features seen in Microsoft SQL Server).
        3. Real-time monitoring dashboards for live tracking of system performance (like Grafana).
        4. Log aggregation and analysis tools to streamline troubleshooting and maintenance (implemented with tools like ELK Stack).

5. Seasonal Demand Scaling: The ability to scale resources up or down based on demand makes cloud data warehouses ideal for industries with seasonal fluctuations, allowing them to handle peak data loads without permanent investments in hardware. It’s like having a magical warehouse that expands during the holiday rush and shrinks during the slow season. No more paying for empty shelf space!

Key features:

        1. Semi-automatic or fully automatic resource allocation for handling variable workloads (like Actian Data Platform’s scaling and Schedules feature, or Google BigQuery’s automatic scaling).
        2. Cloud-based scalability options that provide elasticity and cost efficiency (as seen in AWS Redshift).
        3. Distributed architecture that allows horizontal scaling (such as Apache Hadoop).

6. Enhanced Performance and Lower Costs: Modern data warehouses are engineered to provide superior performance in data processing and analytics, while simultaneously reducing the costs associated with data management and operations. Imagine a race car that not only goes faster but also uses less fuel. That’s what we’re talking about here—speed and efficiency in perfect harmony.

Key features:

        1. Advanced query optimizers that adjust query execution strategies based on data size and complexity (like Oracle’s Query Optimizer).
        2. In-memory processing to accelerate data access and analysis (such as SAP HANA).
        3. Caching mechanisms to reduce load times for frequently accessed data (implemented in systems like Redis).
        4. Data compression mechanisms to reduce the storage footprint of data, which not only saves on storage costs but also improves query performance by minimizing the amount of data that needs to be read from disk (like the advanced compression techniques in Amazon Redshift).

7. Disaster Recovery: Cloud data warehouses often feature built-in redundancy and backup capabilities, ensuring data is secure and recoverable in the event of a disaster. Think of it as your data’s insurance policy—when disaster strikes, you’re not left empty-handed.

Key features:

        1. Redundancy and data replication across geographically dispersed data centers (like those offered by IBM Db2 Warehouse).
        2. Automated backup processes and quick data restoration capabilities (like the features in Snowflake).
        3. High availability configurations to minimize downtime (such as VMware’s HA solutions).

Note: The following use cases are typically driven by separate solutions, but are core to an organization’s warehousing strategy.

8. (Depends on) Data Consolidation and Integration: By consolidating data from diverse sources like CRM and ERP systems into a unified repository, data warehouses facilitate a comprehensive view of business operations, enhancing analysis and strategic planning.

Key features:

          1. ETL and ELT capabilities to process and integrate diverse data (using platforms like Actian Data Platform or Informatica).
          2. Support for multiple data formats and sources, enhancing data accessibility (capabilities seen in Actian Data Platform or SAP Data Warehouse Cloud).
          3. Data quality tools that clean and validate data (like tools provided by Dataiku).

9. (Facilitates) Business Intelligence: Data warehouses support complex data queries and are integral in generating insightful reports and dashboards, which are crucial for making informed business decisions. Consider this the grand finale where all your data prep work pays off—transforming raw numbers into visual stories that even the most data-phobic executive can understand.

Key features:

          1. Integration with leading BI tools for real-time analytics and reporting (like Tableau).
          2. Data visualization tools and dashboard capabilities to present actionable insights (such as those in Snowflake and Power BI).
          3. Advanced query optimization for fast and efficient data retrieval (using technologies like SQL Server Analysis Services).

The technical capabilities we’ve discussed showcase how modern data warehouses are breaking down silos and bridging gaps across organizations. They’re not just tech tools; they’re catalysts for business transformation. In a world where data is the new currency, a well-implemented data warehouse can be your organization’s most valuable investment.

However, as data warehouses grow in power and complexity, many organizations find themselves grappling with a new challenge: managing an increasingly intricate data ecosystem. Multiple vendors, disparate systems, and complex data pipelines can turn what should be a transformative asset into a resource-draining headache.

“In today’s data-driven world, companies need a unified solution that simplifies their data operations. Actian Data Platform offers an all-in-one approach, combining data integration, data quality, and data warehousing, eliminating the need for multiple vendors and complex data pipelines.”

This is where Actian Data Platform shines, offering an all-in-one solution that combines data integration, data quality, and data warehousing capabilities. By unifying these core data processes into a single, cohesive platform, Actian eliminates the need for multiple vendors and simplifies data operations. Organizations can now focus on what truly matters—leveraging data for strategic insights and decision-making, rather than getting bogged down in managing complex data infrastructure.

As we look to the future, the organizations that will thrive are those that can most effectively turn data into actionable insights. With solutions like Actian Data Platform, businesses can truly capitalize on their data warehouse investment, driving meaningful transformation without the traditional complexities of data management.

Experience the data platform for yourself with a custom demo.

The post Data Warehousing Demystified: Your Guide From Basics to Breakthroughs appeared first on Actian.


Read More
Author: Fenil Dedhia

Data Lake Strategy: Its Benefits, Challenges, and Implementation


In today’s hyper-competitive business environment, data is one of the most valuable assets an organization can have. However, the sheer volume, variety, and velocity of data can overwhelm traditional data management solutions. Enter the data lake – a centralized repository designed to store all types of data, whether structured, semi-structured, or unstructured.  Unlike traditional data warehouses, data […]

The post Data Lake Strategy: Its Benefits, Challenges, and Implementation appeared first on DATAVERSITY.


Read More
Author: Rohail Abrahani

Beyond the “IT Guy” Stereotype: How Technology Leaders Drive Business Success


Traditionally, IT departments have been viewed as support functions primarily responsible for maintaining hardware, troubleshooting software issues, and ensuring basic connectivity. IT leaders are often treated like technical experts running a cost center, relegated to a dim back office and only emerging when summoned to address a problem.  But that couldn’t be further from the […]

The post Beyond the “IT Guy” Stereotype: How Technology Leaders Drive Business Success appeared first on DATAVERSITY.


Read More
Author: Manjula Mahajan

Book of the Month: Insights from “Humanizing Data Strategy”


Welcome to our new series, “Book of the Month.” In this series, we will explore new books in the data management space, highlighting how thought leaders are driving innovation and shaping the future. This month, we’re grabbing a cup of coffee, settling into our favorite reading nook, and diving into “Humanizing Data Strategy: Leading Data […]

The post Book of the Month: Insights from “Humanizing Data Strategy” appeared first on DATAVERSITY.


Read More
Author: Mark Horseman

The Data Difference: How SMBs Are Getting Ahead of the Competition


The cost of complacency is becoming crystal clear in the small and medium-sized business (SMB) space. There’s little room for those who rest on their laurels, especially when they make up over 95% of businesses globally emerging all the time. Amid fierce and crowded competition, innovation increasingly sets apart the high performers from those struggling to stand their […]

The post The Data Difference: How SMBs Are Getting Ahead of the Competition appeared first on DATAVERSITY.


Read More
Author: Claire Gribbin

The Relationship Between Storage Consolidation and a Hybrid Multi-Cloud IT Strategy


When you are presenting a way for IT to save money and have a better strategy to leverage the cloud, here’s a pro tip that can benefit any and all enterprises: A hybrid multi-cloud approach, with a strong private cloud configuration, creates the opportunity to consolidate storage arrays for maximum efficiency. Consolidation of storage saves on […]

The post The Relationship Between Storage Consolidation and a Hybrid Multi-Cloud IT Strategy appeared first on DATAVERSITY.


Read More
Author: Eric Herzog

When Business Growth Strategy Drives Data Strategy


What are the biggest data strategy challenges facing you and your company? If you are like most, the main reason for developing a data strategy is to be capable of supporting the growth strategy of each type of business in an exclusive way – to offer competitive resilience with balance and maturity to defend and […]

The post When Business Growth Strategy Drives Data Strategy appeared first on DATAVERSITY.


Read More
Author: Carlos Cruz

Enterprise Data World 2024 Takeaways: Trending Topics in Data Management


I was privileged to deliver a workshop at Enterprise Data World 2024. Publishing this review is a way to express my gratitude to the fantastic team at DATAVERSITY and Tony Shaw personally for organizing this prestigious live event. Participating in such events has multiple advantages, including becoming familiar with trending topics in the data management […]

The post Enterprise Data World 2024 Takeaways: Trending Topics in Data Management appeared first on DATAVERSITY.


Read More
Author: Irina Steenbeck

The Importance of Data Strategy in Digital Transformation
The term digital transformation may mean different things to different companies. At its most fundamental, digital transformation is the movement of processes, actions, and tools from an offline to an online environment.  However, digital transformation might involve anything from re-formatting and digitally enabling an entire organization to building up a mobile application, website, or process. […]


Read More
Author: Hazel Raoult

Key Considerations for C-Suite Leaders Involved in Digital Transformation Initiatives


With spending on digital transformation initiatives worldwide projected to hit $3.9 trillion by 2027, the pressure is on organizations – and specifically the C-suite – to ensure that not only are they best positioned to tackle the digital challenges of today but that they can quickly adapt to those of tomorrow as well.  C-suite leaders find themselves […]

The post Key Considerations for C-Suite Leaders Involved in Digital Transformation Initiatives appeared first on DATAVERSITY.


Read More
Author: Cory McNeley

Data Privacy Through Robust Data Governance: Strategies and Best Practices


Today, more than ever, people are concerned about data privacy. Reflecting this, countries all over the world have introduced privacy laws – GDPR and CCPA being the biggest examples. These laws govern how businesses should collect, manage, and maintain data. This has prompted businesses to reevaluate their data collection operations. But to keep data private and secure businesses […]

The post Data Privacy Through Robust Data Governance: Strategies and Best Practices appeared first on DATAVERSITY.


Read More
Author: Phil Pearce

Driving Data Governance: The Role of Data Strategy and Data Literacy Programs


In today’s data-driven world, organizations face increasing pressure to manage and govern their data assets effectively. Data governance plays a crucial role in ensuring that data is managed responsibly, securely, and in accordance with regulatory requirements. One key component and driver of successful data governance is the implementation of a robust data strategy coupled with […]

The post Driving Data Governance: The Role of Data Strategy and Data Literacy Programs appeared first on DATAVERSITY.


Read More
Author: Gopi Maren

Data Intelligence: The Key to Empowered People and Decisions


McKinsey analysts predict that enterprise employees will rely on data for almost every decision come 2025. If true, this development would mark a significant departure from the current business modus operandi. According to our research, only 25% of enterprise data professionals believe their organization’s decision-making process is data-backed or strategic.  How are these two concepts – the perception of data […]

The post Data Intelligence: The Key to Empowered People and Decisions appeared first on DATAVERSITY.


Read More
Author: Herve Chapron

Reimagining Data Strategy to Unlock AI’s Potential


Data: The currency powering the modern digital economy. In a world generating 3.5 quintillion bytes of data every day, one reality is clear – we’re surrounded by a sea of information. While this abundance of data presents immense opportunities, businesses often struggle to fully capitalize on its potential for informed decision-making and strategic insights.

Consider this. While data is perhaps every company’s most valuable asset for enabling a growth-driving customer experience…

The post Reimagining Data Strategy to Unlock AI’s Potential appeared first on DATAVERSITY.


Read More
Author: Raj De Datta

Unleashing the Power of AI in Life Sciences


The life sciences industry is generating an increasing number of data points a day. While this data is essential to helping organizations make insight-informed decisions about critical operations, such as in clinical trial development, it is also proving to be a complex and daunting task, taking a significant toll on sponsors and clinical sites. In their quest […]

The post Unleashing the Power of AI in Life Sciences appeared first on DATAVERSITY.


Read More
Author: Tim Riely

Data Management Predictions for 2024: Five Emerging Trends


As we near the end of 2023, it is imperative for Data Management leaders to look in their rear-view mirrors to assess and, if needed, refine their Data Management strategies. One thing is clear; if data-centric organizations want to succeed in 2024, they will need to prepare for an environment in which data is increasingly […]

The post Data Management Predictions for 2024: Five Emerging Trends appeared first on DATAVERSITY.


Read More
Author: Angel Viña

Data Governors, First Govern Yourselves


Data Governance, as currently practiced, is failing. There have been some successes, but by and large, even these efforts have fallen short. Worse, many of those tasked with contributing to Data Governance find the effort painful.  We have enormous sympathy for data governors. (We use the term “data governors” – DGs – as the most […]

The post Data Governors, First Govern Yourselves appeared first on DATAVERSITY.


Read More
Author: John Ladley and Thomas Redman

Implementing an Effective Data Strategy
According to the authors of “Data Is Everybody’s Business,” a data strategy “lays out an organization’s goals and plans for managing and exploiting data.” So, where are chief information officers (CIOs) at in facilitating a data strategy with their business counterparts? What things get in the way the most? And, of course, what advice do […]


Read More
Author: Myles Suer

Crossing the Data Divide: Framework for Selling Data Initiatives
Deja Vu All Over Again Something interesting has been happening to me over the last few months that I’ve not experienced in a while. Smart and experienced CIOs and their data leaders have been asking me for input regarding how to sell the value of a data program. The question is a clear sign of […]


Read More
Author: John Wills

The Book Look: Data Strategies for Data Governance
What makes a data book great? Our time is valuable, so a good data book should be concise and practical. It should show us how to do something, step by step, so we can apply the techniques to reinforce and always remember. The experiences of the author should shine through in every chapter. It should […]


Read More
Author: Steve Hoberman

Is Your Data Ready for Generative AI?


Generative AI (GenAI) is all the rage in the world today, thanks to the advent of tools like ChatGPT and DALL-E. To their credit, these innovations are extraordinary. They’ve put the power of artificial intelligence and machine learning (AI/ML) into the hands of everyday users. However, these tools have also skewed our perceptions of what […]

The post Is Your Data Ready for Generative AI? appeared first on DATAVERSITY.


Read More
Author: Jeff Carson

Data Driven Customer Retention Strategies
Data driven marketing strategies supported by customer insights can significantly boost the customer experience, leading to higher customer retention rates. Each customer, or customer segment, is unique, and it is necessary to understand the behaviors and needs of each segment to truly connect with them on a personal level that keeps them coming back for […]


Read More
Author: Ainsley Lawrence

Strong AI/ML Must Be Founded on a Strong Data Strategy


The list of use cases powered by artificial intelligence (AI) and machine learning (ML) technologies is growing exponentially across nearly every business sector. Enterprises of all kinds are leveraging these advanced capabilities and scaling them through automation to improve business process management, sharpen organizational strategies, and reap more analytical and predictive insights from data for […]

The post Strong AI/ML Must Be Founded on a Strong Data Strategy appeared first on DATAVERSITY.


Read More
Author: Adam Glaser

RSS
YouTube
LinkedIn
Share