Search for:
Through the Looking Glass: What Does Data Quality Mean for Unstructured Data?
I go to data conferences. Frequently. Almost always right here in NYC. We have lots of data conferences here. Over the years, I’ve seen a trend — more and more emphasis on AI.   I’ve taken to asking a question at these conferences: What does data quality mean for unstructured data? This is my version of […]


Read More
Author: Randall Gordon

Unleashing the Power of Data: A Guide for CIOs and CDOs
In today’s data-driven landscape, organizations have a wealth of information at their fingertips — but unlocking its full potential is a complex challenge. Many struggle to effectively leverage data for AI, analytics, and decision-making, often hindered by issues like accuracy, availability, and security. For CIOs and CDOs, prioritizing and addressing these obstacles is mandatory. From […]


Read More
Author: Myles Suer

Data Speaks for Itself: Data Validation – Data Accuracy Imposter or Assistant?
In my last article, “The Shift from Syntactic to Semantic Data Curation and What It Means for Data Quality” published in the August 2024 issue of this newsletter, I argued how the adoption of generative AI will change the focus and scope of data quality management (DQM). Because data quality is measured in the degree […]


Read More
Author: Dr. John Talburt

Data Errors in Financial Services: Addressing the Real Cost of Poor Data Quality
Data quality issues continue to plague financial services organizations, resulting in costly fines, operational inefficiencies, and damage to reputations. Even industry leaders like Charles Schwab and Citibank have been severely impacted by poor data management, revealing the urgent need for more effective data quality processes across the sector.  Key Examples of Data Quality Failures  — […]


Read More
Author: Angsuman Dutta

Strengthening Data Governance Through Data Security Governance
Data security governance is becoming increasingly critical as organizations manage vast amounts of sensitive information across complex, hybrid IT environments. A robust governance framework ensures that data is protected, accessible, and compliant with regulations like GDPR and HIPAA. By centralizing access controls, automating workflows, and applying consistent security measures, organizations can more effectively and efficiently […]


Read More
Author: Myles Suer

Scalability in Data Engineering: Preparing Your Infrastructure for Digital Transformation
In the present era of data-centricity, institutions are amassing an immense amount of information at an unparalleled pace. This inundation of data holds the solution to unlocking invaluable perceptions, but only with proficient management and analysis. That is precisely where the art of data engineering comes into play. Data engineering services engineer systems that collect, store, and […]


Read More
Author: Hemanth Kumar Yamjala

Data Leader’s Playbook for Data Mapping
I’ve been thinking a lot about data mapping lately. I know, weird, right? With analytics, AI, cloud, etc., why would someone do that? What’s even stranger is that I’ve been thinking about its impact on data leaders. For clarity’s sake, I’m not talking about geographic maps with data points, I’m referring to the process of […]


Read More
Author: John Wills

Data Crime: Cartoon Signatures
I call it a “data crime” when someone is abusing or misusing data. When we understand these stories and their implications, it can help us learn from the mistakes and prevent future data crimes. The stories can also be helpful if you must explain the importance of  data management to someone.   The Story  The state of Rhode […]


Read More
Author: Merrill Albert

Combat Governance Dilution: The CGO Solution
The term “governance” has become so widely used that it has lost much of its impact and precision. Originally, governance referred to the frameworks and processes for formalized and effective organizational control and accountability. However, its frequent and broad application across various contexts — ranging from IT to corporate, data, information, and AI governance — […]


Read More
Author: Robert S. Seiner

Data Quality: The Hidden Cornerstone of Digital Transformation Success
As organizations rush headlong into digital transformation initiatives, a critical factor often gets overlooked: data quality. In the race to implement cutting-edge technologies and overhaul business processes, many companies fail to recognize that the success of these efforts hinges on the accuracy, completeness, and reliability of their underlying data. This oversight can lead to disastrous […]


Read More
Author: Christine Haskell

Through the Looking Glass: More Metaphors and LLMs
Part I When I finished my last column, “Through the Looking Glass: Metaphors, MUNCH, and Large Language Models,” I stated my intention to follow up with part II. I would cover whether a knowledge graph’s vocabulary of “triples” relates to metaphoric thinking. I even considered challenging an LLM on its ability to understand metaphors to […]


Read More
Author: Randall Gordon

Legal Issues for Data Professionals: Current Leading U.S. AI Laws
There is no nationwide federal law in the U.S. that specifically regulates the development, deployment, and use of AI in the private sector. (This contrasts with AI use in U.S. federal agencies, as discussed below.) This absence of such a federal law contrasts with the recently enacted AU AI law.  Instead, in the U.S., there […]


Read More
Author: William A. Tanenbaum

Data Crime: Your Phone Isn’t Here
I call it a “data crime” when someone is abusing or misusing data. When we understand these stories and their implications, it can help us learn from the mistakes and prevent future data crimes. The stories can also be helpful if you must explain the importance of data management to someone.  The Story Last year, a […]


Read More
Author: Merrill Albert

Data Literacy: The $100 Million Insurance Policy You’re Probably Ignoring
In boardrooms across the globe, executives are gleefully signing off on multi-million-dollar investments in data infrastructure. Big data! AI! Machine learning! But here’s the inconvenient truth they’re overlooking: Without a data-literate workforce, these shiny new toys are as useful as a Ferrari in a traffic jam.  The Elephant in the Data Center  Let’s cut to […]


Read More
Author: Christine Haskell

Soft Skills for Data Professionals and Practical Ways to Learn Them
I have been in data, in some form or another, for over 20 years and have come a long way in both my technical and soft skills during that time. There are plenty of roles for data professionals that do not require soft skills, and if that’s what you are into, more power to you. […]


Read More
Author: Rebecca Gazda

Data Is Risky Business: Scaling Data Governance to the National Stage
I recently started a doctorate. And because I obviously have too much free time after running my business, teaching, and writing columns for august publications like this, I’m looking at data governance. But not at the level of the organization. My doctoral research will be a deep dive into some oft-neglected human factors that need to […]


Read More
Author: Daragh O Brien

The Data-Centric Revolution: Dealing with Data Complexity
There are many perennial issues with data: data quality, data access, data provenance, and data meaning. I will contend in this article that the central issue around which these others revolve is data complexity. It’s the complexity of data that creates and perpetuates these other problems. As we’ll see, it is a tractable problem that […]


Read More
Author: Dave McComb

Building Sustainable Data Centers for the Digital Age
Data centers are increasingly necessary in today’s digitally dependent world. However, these specialized facilities are incredibly resource-intensive, requiring the professionals designing them to make numerous sustainable decisions. Which steps should they follow in such processes?  Identify Areas for Improvement  Many data center projects focus on changing existing structures to make them maximally sustainable. Similarly, some […]


Read More
Author: Ellie Gabel

Fundamentals of AI Automation
Experts predict the AI market will grow from $184 billion in 2024 to $826 billion by 2030. And considering the wide range of use cases for AI tools, that’s not much of a surprise. However, while solutions like ChatGPT continue growing in popularity among everyday users, the most significant potential of artificial intelligence lies in […]


Read More
Author: Sarah Kaminski

Change Management in Data Projects: Why We Ignored It and Why We Can’t Afford to Anymore
For decades, we’ve heard the same refrain: “Change management is crucial for project success.” Yet leaders have nodded politely and ignored this advice, particularly in data and technology initiatives. The result? According to McKinsey, a staggering 70% of change programs fail to achieve their goals.[1] So why do we keep making the same mistake, and more importantly, […]


Read More
Author: Christine Haskell

Synergy: Data Security Posture Management and Data Security Governance
Several years ago, while working for a firm developing groundbreaking software, I proposed to my boss that we were, in fact, creating an entirely new market class of software. My boss quickly dismissed this notion, stating that software firms don’t create market categories — analyst firms do. Fast forward to today, and those very analyst […]


Read More
Author: Myles Suer

Eyes on Data: Understanding Data Products and Their Role in Data Marketplaces
In the rapidly evolving landscape of data management, the concept of data products has emerged as a cornerstone for effective data utilization and governance. Industry experts have shed light on the critical nature of data products, their distinction from data assets, and their pivotal role in data marketplaces. As organizations strive to maximize the value […]


Read More
Author: EDM Council

A Step Ahead: IoT Sensors – Where Vast Data Comes From
The insight we gain from an IoT system is derived from the data obtained by its sensors. Driven by innovations in materials and nanotechnology, sensor technology has been developing at unprecedented speeds and has resulted in lower-cost sensors that have better accuracy, are smaller in size, and able to detect or measure the presence of […]


Read More
Author: The MITRE Corporation

Artificial vs. Augmented Intelligence
Terms like artificial intelligence (AI) and augmented intelligence are often used interchangeably. However, they represent fundamentally different approaches to utilizing technology, especially when it comes to data governance. Understanding these differences is crucial for organizations looking to implement non-invasive and effective data governance frameworks. This article explores the distinctions between artificial intelligence and augmented intelligence, […]


Read More
Author: Robert S. Seiner

RSS
YouTube
LinkedIn
Share